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The motion of gas within an air-filled rigid-walled square channel subjected to acoustic standing waves is
experimentally investigated. The synchronized particle image velocimetry (PIV) technique has been used
to measure the acoustic velocity fields at different phases over the excitation signal period. The acoustic
velocity measurements have been conducted for two different acoustic intensities in the quasi-nonlinear
range (in which the nonlinear effects can be neglected in comparison with the dissipation effects), and
one acoustic intensity in the finite-amplitude nonlinear range (in which both the nonlinear term and
the dissipative term play a role in the wave equation). The experimental velocity fields for the quasi-non-
linear cases are compared with the analytical results obtained from the time-harmonic solution of the
wave equation. Good agreement between the experimental and analytical velocity fields proves the abil-
ity of the synchronized PIV technique to accurately measure both temporal and spatial variations of the
acoustic velocity fields. The verified technique is then used to measure the acoustic velocity fields of the
finite-amplitude nonlinear case at different phases.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

The study of nonlinear acoustic standing waves in closed tubes
is very important in the design of a wide range of systems such as
thermoacoustic devices [1,2], high quality resonators [3], standing
wave motors [4] and particle filtration and levitation equipment
[5]. When a standing wave is induced in a tube, the shape and
amplitude of pressure and particle velocity inside the tube are
strongly dependent on the amplitude of the excitation signal.
Although several papers dealing with the analytical [6–8] and
numerical [3,9–13] studies of nonlinear standing waves, as well
as experimental investigation of the acoustic pressure in the non-
linear standing wave tube [14,15] can be found in the literature,
relatively few experimental investigations have been performed
to measure the acoustic velocity fields inside a standing wave
resonator.

The acoustic particle velocity can be measured using different
techniques. Huelsz et al. [16,17] used hot-wire anemometry
(HWA) to measure acoustic velocities in the linear range (maxi-
mum velocity of 0.8 m/s). Laser Doppler anemometry (LDA) has
also been used to measure acoustic velocity. Vignola et al. [18]
assembled and tested a differential LDA to provide noninvasive
measurements of the acoustic velocities of linear standing waves
ll rights reserved.
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generated in a water-filled tube. Thompson et al. [19] used LDA
with burst spectrum analysis (BSA) to study the acoustic velocities
of amplitude less than 1.3 m/s (linear range) generated in a cylin-
drical standing-wave resonator filled with air. Gazengel et al. [20]
assessed the performances of two LDA systems adapted for mea-
suring the acoustic particle velocities in an enclosed acoustic field.
This assessment was performed by comparing the acoustic veloci-
ties measured by means of LDA to reference acoustic velocities
estimated from sound pressure measurements. In their experi-
ments, the maximum velocity amplitudes were 0.1, 1 and
10 mm/s (linear range) and the corresponding relative errors were
11%, 5% and 3.6%. These techniques however, provide velocity mea-
surements at a point in space, therefore, detailed simultaneous
two-dimensional flow structure cannot be obtained from these
techniques. Furthermore, HWA is an intrusive technique which
disturbs the velocity fields inside the resonator.

PIV provides two-dimensional velocity fields with high spatial
resolution. PIV is used routinely in many experimental investiga-
tions of fluid flows and heat transfer [21,22]. However, very few
studies have reported the velocity measurements of the acoustic
standing wave using PIV. Hann and Greated [23,24] have shown
the ability of PIV to measure the amplitude of the sinusoidal sound
field and the mean flow. They measured particle velocities of an
acoustic standing wave inside a square channel at a frequency of
1616 Hz. However, they did not present detailed velocity charac-
teristics. Campbell et al. [25] reported a review of PIV with its
application to the measurement of sound. Shin et al. [26] used
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PIV to study the velocity field in the acoustic boundary layer of a
linear standing wave in liquid within a small tube of 315 mm
length and 3 � 3 mm cross-section. In their experiment, the veloc-
ity fields were measured at different temporal values with respect
to the driving sinusoidal signal using a set of delay generators.
However, their experiment was performed in the linear range of
acoustic intensity and they measured the velocity field in a small
field of view (190 � 150 lm) near the wall in order to investigate
the boundary layer effect. Recently, Castrejón-Pita et al. [27] used
PIV and LDA to measure amplitude and phase of velocity on the
laminar oscillatory viscous boundary layer produced by an acoustic
standing wave. They found a good agreement between the exper-
imental data and the predictions made by the Rayleigh viscous
boundary layer theory.

As the literature review indicates, all previous studies related to
the acoustic velocity measurement have been performed in the lin-
ear range and consequently, no experimental study has reported
the spatial and temporal variations of the velocity field inside a
nonlinear acoustic standing wave resonator. Some of the chal-
lenges of taking accurate PIV measurements in the nonlinear
standing wave resonator are (1) using a synchronized technique
to measure the velocity field at different phases, (2) choosing the
appropriate separation time between two images based on the
excitation frequency and acoustic intensity magnitude, to accu-
rately measure large-gradient, high-frequency nonlinear velocity
fields, and (3) using a proper particle image processing algorithm
for the improvement of PIV velocity measurements characterized
by large velocity gradients.

In the present study, we investigated the behavior of the acous-
tic velocity fields of nonlinear standing waves temporally and spa-
tially using the synchronized PIV technique. We have first applied
the technique to two cases in which the nonlinear effects can be
neglected in comparison with the dissipation effects. Therefore,
the resultant wave equation can be solved analytically. The analyt-
ical formula for the particle velocity variations can be used to com-
pare with the experimental velocities. After the validation, the
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Fig. 1. Schematic of the experimen
technique is used for the finite-amplitude nonlinear velocity mea-
surement in which both the nonlinear term and the dissipative
term play a role in the wave equation. To the best of the authors’
knowledge, this work is the first experimental investigation of
the spatial and temporal particle velocity inside a nonlinear acous-
tic standing wave tube.
2. Synchronized PIV technique

In the PIV technique, a laser light sheet is pulsed twice with a
known time separation between the two pulses. A CCD camera
captures the images of the tracer particles at each pulse in the flow
field of interest. The displacement of particles between the two
images divided by the time separation between the laser pulses
provides the velocity field. In the conventional PIV setup, the laser
pulses are synchronized with the camera frames. Typically these
signals are not synchronized with any flow characteristics, as for
steady flows this is not necessary. However, for velocity measure-
ments in the presence of an acoustic standing wave, these signals
should be synchronized with the excitation signal to capture the
velocity fields at the desired phase. We developed an electronic cir-
cuit to generate a trigger signal which synchronizes the laser
pulses and camera frame with any particular phase of the excita-
tion signal. This phase can be adjusted from 0 to 2p and therefore,
covers the whole period of the excitation waveform. Since the time
delay, width of the trigger signal, frequency of the excitation signal
and time separation between two laser pulses are accurately
known, the phase where two laser pulses are located in the excita-
tion signal can be computed.
3. Experimental setup

The schematic of the experimental setup developed to measure
the acoustic velocity fields inside the standing wave tube using
the synchronized PIV technique is shown in Fig. 1. The acoustic
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Fig. 2. Maximum velocity at the center of the driver diaphragm (u0) versus
excitation voltage at different excitation frequencies; s, 496 Hz; e, 1020 Hz; Solid
line, linear fit. The overall bias error between the measured and fitted velocities for
f = 496 and 1020 Hz is 0.36 and 0.49 cm/s, respectively.
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chamber is a Plexiglas channel with a square cross-sectional area.
The inner dimensions of the channel are 7 cm � 7 cm. The walls of
the channel are 6 mm thick, and therefore, the assumption of rigid
walls held for this channel. The two-dimensional velocity fields in-
side the channel are measured using synchronized PIV. The mea-
surements are made in a plane parallel to the channel length at
the mid-channel location as shown in Fig. 1. A 120 mJ Nd:YAG laser
(Solo PIV 120XT, New Wave Research) is used as a light source for
the PIV measurements. A CCD camera (JAI, CV-M2) with the reso-
lution of 1600 � 1200 pixels is used to image the flow. The camera
is connected to a PC equipped with a frame grabber (DVR Express,
IO Industries, London, ON, Canada) that acquires 8 bit images at a
rate of 30 Hz. A four-channel digital delay generator (555-4C,
Berkeley Nucleonics Corporation, San Rafael, CA) is used to control
the timing of the laser pulses. BIS(2-ETHYLHEXYL) SEBACATE mist
with the mean diameter of 0.5 lm is used as the tracer particles.
An aerosol generator (Lavision Inc., Ypsilanti, MI) is used to gener-
ate the mist. A special loudspeaker driver is used to excite the
acoustic standing wave inside the tube. The driver has a maximum
power of 200 watts and DC resistance of 8X. The use of a loud-
speaker driver as an acoustic source made it easy to vary the fre-
quency and intensity of excitation continuously and precisely. A
function generator (model Agilent 33120A) is used to generate
the sinusoidal waves of different frequencies and amplitudes. The
accuracy of the generated frequency and amplitude are 1 lHz
and 0.1 mV, respectively. The signal from the function generator
is amplified by a 220-W amplifier (Pioneer SA-1270). The loud-
speaker is driven by this amplified signal (see Fig. 1). The driver
frequency (f) is set equal to 935 Hz. The corresponding wavelength
(k) of the acoustic standing wave is 36.4 cm. The length of the
channel (L) is adjusted with the movable piston to allow the forma-
tion of two full standing waves inside the channel (i.e.
L = 2k = 72.8 cm). Before conducting PIV measurements, the duct’s
length is tuned to get the appropriate resonance. The field of view
of the CCD camera is set in a way to map the flow field in the half
wavelength section. That is, the field of view of the camera is set
equal to 19 cm in horizontal and 14.25 cm in vertical. In order to
accurately measure the periodic particle velocity, the separation
time between two images must be adjusted appropriately. Due
to the oscillation of the particles, the time separation between
the two images of an image pair should be much less than a quar-
ter of the wave period. Otherwise, the particle displacement com-
puted by cross-correlating the PIV images will be smaller than the
actual displacement of the particles. This will result in underesti-
mating the acoustic velocities. On the other hand, for a very short
separation time, the particle shift between images of an image pair
will be too small and will increase uncertainty in the velocity mea-
surements. In the present case, the time separation is set equal to
40 ls, which is about seven times smaller than the quarter of wave
period. The vertical dimension of the camera field of view is larger
than the channel height. Therefore, before computing the velocity
vectors, the images are preprocessed to remove the regions outside
the channel from the images. A non-commercial computer code is
used for PIV velocity computation by cross-correlating the interro-
gation region in the first image with the corresponding search re-
gion in the second image. The size of the interrogation region is set
equal to 32 � 32 pixels and the size of the search region is set equal
to 64 � 64 pixels. A three-point Gaussian sub-pixel fit scheme is
used to obtain the correlation peak with sub-pixel accuracy. A
50% window overlap is used in order to increase the nominal res-
olution of the velocity field to 16 � 16 pixels. This resulted in a spa-
tial resolution of 1.9 � 1.9 mm of the velocity field. A scheme is
used to identify the spurious velocity vectors and then correct
them using a local median test [28].

The maximum diaphragm velocity is also measured for each
excitation amplitude. A Brüel & Kj�r laser vibrometer is used to
measure this parameter. The laser vibrometer consists of three
components: A Helium–Neon laser velocity transducer type
8323, a power supply type 2815 and a signal analyzer unit type
2035. Unlike traditional contact vibration transducers, the laser
vibrometer requires no physical contact with the test object. The
measurement principle of a laser vibrometer is based on the Dopp-
ler Effect. When monochromatic laser light is scattered back from a
vibrating target it undergoes a frequency shift proportional to the
velocity of the target. Fig. 2 shows the maximum vibration velocity
at the center of the driver’s diaphragm (u0) as a function of the
excitation voltage of the driver for different excitation frequencies.
The plot shows that for a given excitation frequency, the dia-
phragm velocity and excitation voltage are almost linearly related.
The plot also shows that the slope increases with the excitation fre-
quency. With the use of Fig. 2, at a given excitation frequency, the
amplitude of diaphragm velocity can be estimated at all excitation
voltages over the range of our practical interest. To confirm that
the assumption of rigid walls holds for the channel used in this
study, we have also measured the wall vibration using the laser
vibrometer. The maximum wall displacement is found to be
approximately 0.5 lm which is about 0.5% of the maximum dis-
placement of the acoustic driver which is around 100 lm. To con-
firm that the speaker was not saturated particularly at high
amplitudes, the spectra of the laser vibrometer output signal were
analyzed. The results showed a peak at the excitation frequency
with an amplitude significantly higher than the adjacent frequen-
cies, which confirms that the speaker was not saturated. By adjust-
ing the time delay in the synchronization circuit, the
measurements are taken at 18 different phases of the excitation
signal. The first image is taken at the desired phase. For each phase
of the excitation voltage, 200 PIV images are captured. From these
images, 100 acoustic velocity fields are computed.

4. Mathematical formulation

The description of nonlinear acoustic waves in a viscous, heat-
conducting fluid is obtained using the basic equations of fluid
mechanics along with the appropriate state equation which can
be written in one-dimension as

Continuity equation:

qt þ ðquÞx ¼ 0; ð1Þ
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Navier-Stokes equation:

q ut þ
1
2
ðu2Þx

� �
¼ �px þ lB þ

4
3
l

� �
uxx; ð2Þ

where u is the axial acoustic velocity, q and p are density and pres-
sure, respectively, which can be written as q = q0 + q0 and p = p0 + p0,
where prime denotes perturbation in the given parameter and sub-
script ‘‘0” represents the static value, l and lB are the shear and
bulk viscosities, respectively.

State equation: An equation of state particularly useful in acous-
tic is one that relates pressure to density and entropy i.e.,
p = p(q,s),

p0 ¼ op
oq

� �
s

q0 þ op
os

� �
q
s0: ð3Þ

Using q0T0
os0
ot ¼ jT 0xx(where T 0 ¼ oT

op

� �
s
p0, and j is the coefficient of

thermal conduction), and the simplified version of the momentum
equation, q0ou=ot ¼ �p0x, it can be obtained, s0 ¼ � j

T0
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� �
s
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, it can be written,
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q
s0 ¼ �j

1
cV
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� �
ux; ð4Þ

where cp and cV are the specific heats at constant pressure and con-
stant volume. Regarding the first term on the right-hand side of Eq.
(3), the sound speed c can be introduced as

c2 � ðop=oqÞjs¼const: ð5Þ

The sound speed may be thought of as a new thermodynamic var-
iable, since it is derived from other thermodynamic quantities. For
finite-amplitude nonlinear case (jq0j � q0), c2 becomes constant,
which can be denoted as c2

0. Thus, a modified equation of state in
one-dimension can be written as [29,13]

p0 ¼ c2
0q
0 � j

1
cV
� 1

cp

� �
ux: ð6Þ

Assuming jq0j � q0, the one-dimensional finite-amplitude nonlin-
ear wave equation in a thermoviscous fluid can be derived using
Eqs. (1), (2), and (6), and written as

utt � c2
0uxx ¼ mbutx �

1
2
ðu2Þt

� �
x
; ð7Þ

where m is the kinematic viscosity and b indicates the total effect of
viscosity and thermal conductivity of the fluid as well as the wall
absorption. This can be written as

b ¼ 2c3
0a

x2m
; ð8Þ

where x = 2pf and a is the total absorbtion coefficient which is the
sum of thermoviscosity absorbtion coefficient and wall absorbtion
coefficient [30]. a is expressed as

a ¼ atv þ awall;

atv ¼
x2m
2c3

0

4
3
þ lB

l
þ c� 1

Pr

� �
;

awall ¼
ffiffiffiffiffiffiffiffi
xm
8c2

0
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Pr
p

� �
}

K
;

ð9Þ

where Pr ¼ lcp
j is the Prandtl number, K is the cross-sectional area,

c = cp/cV is the ratio of specific heats, and } is the perimeter of the
resonator [30].

Both the nonlinear term 1
2 ðu2Þt
� �

and dissipative term (mbutx) in
the righthand side of Eq. (7) play a role in the deviation of the
velocity from the pure sinusoidal waveform observed in the linear
standing wave. Under certain condition (which will be discussed
later in this section), the nonlinear term can be neglected in com-
parison with the dissipative term. Thus, Eq. (7) can be simplified
as

utt � c2
0uxx � mbutxx ¼ 0: ð10Þ

We call this equation the quasi-nonlinear wave equation to differen-
tiate it from the finite-amplitude nonlinear case (Eq. (7)) and linear
wave equation in lossless medium (utt ¼ c2

0uxx).
The fluid is excited by the harmonic motion of a diaphragm at

x = 0 at the frequency f. Assuming L to be the length of the tube
(equal to 2k in the present case), the following boundary condi-
tions are applicable,

uð0; tÞ ¼ u0 cosðwtÞ; uðL; tÞ ¼ 0: ð11Þ

A solution of the form u(x, t) = U(x)e�jxt is sought for Eq. (10). We
write,

U00 þ x2

c2
0 � jmbx

U ¼ 0: ð12Þ

Defining the dissipation parameter d � mbx
2c2

0

xL
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� 1 [8], we get,
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Solving Eq. (13) and using the boundary conditions (11) we obtain,
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where x0 ¼ x 1� 3c2
0d2

2x2L2

� �
.

Eq. (14) represents the analytical solution for the one-dimen-
sional acoustic velocity of quasi-nonlinear case. In order to find
the condition when Eq. (10) (from which Eq. (14) is obtained) is va-
lid, we estimate the nonlinear and dissipative terms on the right-
hand side of Eq. (7). Assuming d� 1, we can write,

uðx; tÞ ’ u0 sin
x0ðL� xÞ

c0
= sin

x0L
c0

� �
cos xt:

It is found that 1
2 ðu2Þt � xu2

0, and mbutx � m bu0x2/c0. Therefore,
the condition when nonlinear effects can be neglected in compar-
ison with dissipation effects can be found as, g � u0c0

mbx � 1. This con-
dition can be written in terms of the acoustical Reynolds number
(Re = c0umax/bmx) as

Re� umax

u0
: ð15Þ

where umax is the maximum acoustic velocity. Therefore, as long as
the acoustic intensity is not very intense so that Eq. (15) is satisfied,
we can consider Eq. (14) as a valid solution for the finite-amplitude
nonlinear wave in an enclosure. Acoustical Reynolds number is a
non-dimensional parameter used to quantify the nonlinearity of
the acoustic wave. The acoustic waves are considered to be linear
if Re is sufficiently less than unity. However, nonlinear acoustical
theory must be used when the amplitude of the oscillations of the
medium is sufficiently great, so that Re is of the order of unity or
higher [8].
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The axial distribution of the analytical axial velocity (Eq. (14))
over the entire tube for u0 = 34 cm/s at different phases is plotted
in Fig. 3. The phases at which the velocity was plotted are t/T = 0,
0.05, 0.1, 0.25, 0.4, 0.45, 0.5, 0.55, 0.6, 0.75, 0.9, and 0.95. As ex-
pected the maximum velocity at the vibrator end is u0 and at the
other end is zero. The variation of the velocity fields especially near
the vibrator end and when the velocity magnitude is low, are devi-
ated from the pure sinusoidal waveform.
5. Results and discussion

All experiments are conducted in air at 20 �C. The static pres-
sure inside the tube is atmospheric. The thermo-physical proper-
ties of air at this condition are, c0 = 340.6 m/s, q0 = 1.2 kg/m3,
l = 1.81 � 10�5 N s/m2, lB = 0.6 � l and c = 1.401. The first set of
experiments has been performed for the quasi-nonlinear condi-
tion. The reason is that the analytical solution for the quasi-nonlin-
ear case is available (Eq. (14)) and thus, the experimental results
can be compared with the analytical ones in order to validate
the measured data. The results are presented for two excitation
amplitudes that correspond to the maximum diaphragm velocity
(u0) of 34 and 40 cm/s, hereinafter referred to as cases A and B,
respectively. The maximum acoustic velocity for cases A and B is
approximately 3.2 and 3.8 m/s, respectively. Thus, the acoustical
Reynolds number is 0.57 for case A and 0.66 for case B, which lie
in the quasi-nonlinear range. For both cases, umax/u0 = 9.5, which
implies that for the validity of Eq. (14), we must have Re� 9.5,
which is true for both cases. Therefore, we conclude that the vali-
dation condition (Eq. (15)) is satisfied and Eq. (14) is a valid solu-
tion for both cases.

The experimental velocity vectors along with the transversely
averaged axial velocities for cases A and B are shown in Figs. 4
and 5 at four different phases. The measurements have been done
over the second half-wavelength (Q2 in Fig. 3) for case A and over
the third half-wavelength (Q3 in Fig. 3) for case B. Two steps were
taken to obtain the transversely averaged axial velocities. First, the
average two dimensional velocity field is obtained first by averag-
ing 100 PIV fields i.e. average velocity is computed at each grid
point. In the next step, at each axial location, the axial velocities
are transversally averaged. The corresponding axial velocities ob-
tained from the analytical formula (Eq. (14)) are also plotted for
comparison. A good agreement in both shape and amplitude be-
tween the experimental and analytical values of the axial velocity
along the channel is observed at all phases for both cases. At all
phases (especially the phases at which the velocity amplitude is
low), the velocity profiles differ from a perfect sinusoidal wave
field which is expected due to attenuation caused by viscous
and nonlinear effects. At phases that correspond to the lower
velocity magnitudes, i.e. t/T = 0.476 and 0.980 (see Figs. 4b and d
and 5b and d), it is observed that the maximum and minimum
peaks are not located at the middle of the Q2 and Q3 sections,
rather they are shifted slightly in the direction away from the dri-
ver end.

Furthermore, as shown in Figs. 4, and 5, the peaks of the exper-
imental and analytical data at all phases are almost coincident,
indicating that these phase-dependent shifts are also predicted
by the mathematical solution of the quasi-nonlinear case. As
shown in Fig. 3, the peaks of velocity at, for example, t/T = 0.05
do not occur at x/k = 0.75 and 1.25. These phase-dependent shifts
are not predicted by the linear wave equation in lossless medium.
Aktas et al. found similar shapes for the axial velocity at different
phases using a numerical model (see Fig. 2a in [9]).

The difference between the experimental transversely averaged
velocity (Ue) and the analytical velocity (Ua) at any particular
phase is compared in terms of the relative error (e) defined as

e ¼ ebias

um
; ebias ¼

1
N

XN

i¼1

jUei � Uaij; ð16Þ
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where ebias is the mean of the deviations between the measured and
analytical velocities, N is the number of data points in the axial
direction and um is the maximum magnitude of the analytical axial
velocity at that particular phase. In order to obtain the uncertainty
in the experimental transversely averaged velocities, we use the
average of the standard deviation (mstd) defined by

mstd ¼ 1
N

XN

i¼1

stdi; stdi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

XM

j¼1

ðUei;j � UeiÞ2
vuut ð17Þ

where M is the number of measured velocity fields at each phase
(M = 100). The values of relative error e for the axial velocity, ebias

for the transversal velocity and mstd for both velocities, at different
phases for both cases A and B are presented in Table 1. The results
show that the overall relative error of the axial velocity for cases A
and B is 7.07% and 7.68%, respectively. At some phases where the
amplitude of the axial velocity is high (t/T around 0.25 and 0.75),
the relative error is lower than the overall relative error. The overall
bias error of the measured transversal velocity is about 1.4 cm/s and
1.6 cm/s for cases A and B, respectively, which is negligible com-
pared to the magnitude of the axial velocity. The differences be-
tween the experimental and analytical results for both axial and
transversal velocities are partially related to the existence of the
acoustic streaming associated with a standing wave resonator.
The streaming velocity is superimposed on the acoustic velocity
and its magnitude is much smaller than that of the acoustic veloc-
ity. The small values of the uncertainty in the measured axial and
transversal velocities indicated by mstdu and mstdv in Table 1, show
that the experimental transversely averaged velocity are correct.

The synchronized PIV technique enables us to resolve the tem-
poral variation of the particle velocity as well. Fig. 6 shows the
temporal variations of the experimental and analytical axial veloc-
ities at x = 3k/4 (velocity anti-node) and x = 5k/8 for case A and
x = 5k/4 (velocity anti-node) and x = 9k/8 for case B. A good agree-
ment is observed between the experimental and analytical results
for both cases. The values of the overall relative error (et) and the
average of the standard deviation (mstdt) in the temporal variation
of the axial velocity over all 18 phases for cases A and B are shown
in Table 2. The results show that the relative error is on average 5%.

The acceptable range of differences between the measured and
analytical acoustic velocities in both time and space domains
proves the ability of the synchronized PIV technique to accurately
measure both temporal and spatial acoustic velocities in a nonlin-
ear standing wave tube.
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Fig. 5. Particle velocities at u0 = 40 cm/s at four different phases, (a) t/T = 0.308, (b) t/T = 0.476, (c) t/T = 0.868, (d) t/T = 0.980; (top) two-dimensional velocity field from PIV
measurements, (bottom) corresponding transversely averaged axial velocity (�). The analytical axial velocities are also plotted with solid line. Horizontal axis is x/k, measured
from the driver end. Note that the resolution of the velocity vectors was reduced in the plot for better visualization.

Table 1
Percentage of the relative error for the axial velocity (eu), bias error for the transversal
velocity (eu bias) and the average of the standard deviation for both velocities (mstdu

and mstdv) in spatial variation at different phases for cases A and B

t/T case A case B

eu (%) mstdu

(cm/s)
eu bias

(cm/s)
mstdv

(cm/s)
eu (%) mstdu

(cm/s)
eu bias

(cm/s)
mstdv

(cm/s)

0.028 16.26 2.2 0.51 0.2 15.71 2.9 0.48 0.4
0.084 6.54 0.6 0.60 0.4 9.82 1.1 1.44 0.7
0.140 11.77 1.4 1.07 0.7 7.61 2.7 0.83 0.7
0.196 7.62 1.6 1.01 0.9 3.17 1.4 0.98 0.8
0.252 4.79 1.6 1.38 1.1 4.86 1.9 1.40 1.0
0.308 3.88 1.9 0.86 0.7 3.68 1.5 2.04 0.8
0.364 5.69 2.1 0.95 0.7 6.09 2.0 1.27 0.6
0.420 7.29 2.0 2.78 0.9 9.98 2.0 1.74 0.6
0.476 5.49 1.2 2.13 0.8 7.12 1.6 0.63 0.5
0.532 4.60 0.7 1.02 0.5 9.51 0.7 1.48 0.4
0.588 7.38 0.8 2.07 0.5 7.49 1.4 1.54 0.6
0.644 6.49 1.6 1.88 0.9 7.07 1.6 3.83 0.8
0.700 4.40 2.3 1.76 0.9 3.61 1.9 3.22 1.1
0.756 3.05 2.6 1.43 1.0 6.06 2.2 2.98 1.0
0.812 7.07 2.5 3.05 1.0 8.19 2.7 2.60 0.9
0.868 9.47 2.4 1.3 0.9 8.31 3.5 2.26 1.1
0.924 10.9 1.8 1.21 0.8 12.56 2.3 1.10 0.7
0.980 4.54 0.7 0.52 0.5 6.76 0.5 0.91 0.3
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We have presented the results for the quasi-nonlinear cases
that have analytical solution in order to compare the experimental
data with the theoretical results and validate the accuracy of the
measurement technique. In the next set of experiment, we used
the verified synchronized PIV technique to measure the acoustic
velocity field of finite-amplitude nonlinear standing wave, that is,
when both nonlinear and dissipation effects are significant. Fig. 7
shows the axial variation of the particle velocity profile at four dif-
ferent phases. The maximum vibrational amplitude of the driver is
u0 = 95 (cm/s). The maximum acoustic velocity (umax) in this case is
7.28 (m/s) and the corresponding Reynolds number is 1.27. Aktas
et al. have reported the similar shape for the spatial variation of
the acoustic velocity using a numerical scheme (see Fig. 2b in
Ref. [9]). Fig. 7 also shows that for the nonlinear case, the velocity
peaks move across the resonator with time, whereas they are al-
most fixed at the middle of the resonator in the linear case. The
peak of the wave (where u has its greatest value) travels fastest
and the trough (where u is least) travels slowest. Consequently,
the peak tends to catch up with the trough [30]. Since in the pres-
ent case the nonlinearity effects are not very large, a slight shift in
the peak locations is observed. The maximum difference between
the position of the velocity peaks is about 0.1k. This difference is
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Fig. 6. Temporal variation of the experimental (symbols) and analytical (solid line)
axial velocities for a u0 = 34 cm/s (�; x = 3k/4, �; x = 5k/8) and b u0 = 40 cm/s (�;
x = 5k/4, s; x = 9k/8).

Table 2
Percentage of the overall relative error (et) and the average of the standard deviation
(mstdt) in the temporal variation of the axial velocity over all 18 phases for cases A
and B at two different locations

case A case B

x/k et (%) mstdt (cm/s) x/k et (%) mstdt (cm/s)

3/4 4.26 1.7 5/4 4.30 1.9
5/8 5.04 1.8 9/8 6.32 2.2
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Fig. 7. Spatial variation of the experimental axial velocities for u0 = 95 cm/s at
different phases, e; t/T = 0.25, �; t/T = 0.45, s; t/T=0.55, �; t/T = 0.75.
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also observed in the quasi-nonlinear cases (Figs. 4 and 5), although
its value is smaller. The plot also shows a wavefront with high
velocity gradient. The ratio between the positive and negative
peaks of the wavefront changes with propagation. Such wavefront
is not observed in the linear case. Thus, it can be concluded that for
nonlinear standing waves, a wavefront with very high velocity and
pressure gradients travels along the resonator.

Finally, the present study, for the first time, presents an accu-
rate technique to measure the two-dimensional variations of the
particle velocity inside the nonlinear standing wave resonator at
different phase of the excitation signal.
6. Conclusions

Spatial and temporal variations of the particle velocity inside an
air-filled rigid-walled square channel in the presence of the quasi
nonlinear standing waves are experimentally investigated. The
synchronized PIV technique has been used to measure the acoustic
velocity fields at 18 different phases over the excitation signal per-
iod for two different acoustic intensities. A good agreement be-
tween the experimental and analytical results in both time and
space domains confirms the accuracy of the method. The analysis
showed that the difference between the experimental and analyt-
ical values of axial velocity is on average less than 7.68%. The ver-
ified technique is then used to measure the acoustic velocity fields
of the finite-amplitude nonlinear case at four different phases. The
result shows a wavefront with high velocity gradient inside the
resonator.
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